On balanced colorings of sparse hypergraphs

نویسنده

  • Andrzej Dudek
چکیده

We investigate 2-balanced colorings of sparse hypergraphs. As applications, we derive several results on balanced edge-colorings of multigraphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Abstract Approach to Polychromatic Coloring: Shallow Hitting Sets in ABA-free Hypergraphs and Pseudohalfplanes

The goal of this paper is to give a new, abstract approach to cover-decomposition and polychromatic colorings using hypergraphs on ordered vertex sets. We introduce an abstract version of a framework by Smorodinsky and Yuditsky, used for polychromatic coloring halfplanes, and apply it to so-called ABA-free hypergraphs, which are a special case of shift-chains. Using our methods, we prove that (...

متن کامل

Partial Colorings of Unimodular Hypergraphs

Combinatorial discrepancy theory asks for vertex-colorings of hypergraphs such that all hyperedges contain all colors in (as good as possible) equal quantity. Unimodular hypergraphs are good in this sense: They (and all their induced subhypergraphs as well) can be two-colored in a way that in each hyperedge the number of vertices in one color deviates from that in the other color by at most one...

متن کامل

Unique-Maximum and Conflict-Free Coloring for Hypergraphs and Tree Graphs

We investigate the relationship between two kinds of vertex colorings of hypergraphs: unique-maximum colorings and conflict-free colorings. In a unique-maximum coloring, the colors are ordered, and in every hyperedge of the hypergraph the maximum color in the hyperedge occurs in only one vertex of the hyperedge. In a conflict-free coloring, in every hyperedge of the hypergraph there exists a co...

متن کامل

Problems and Results on Colorings of Mixed Hypergraphs

We survey results and open problems on ‘mixed hypergraphs’ that are hypergraphs with two types of edges. In a proper vertex coloring the edges of the first type must not be monochromatic, while the edges of the second type must not be completely multicolored. Though the first condition just means ‘classical’ hypergraph coloring, its combination with the second one causes rather unusual behavior...

متن کامل

Greedy colorings of uniform hypergraphs

We give a very short proof of an Erdős conjecture that the number of edges in a non-2-colorable n-uniform hypergraph is at least f(n)2, where f(n) goes to infinity. Originally it was solved by József Beck in 1977, showing that f(n) at least c log n. With an ingenious recoloring idea he later proved that f(n) ≥ cn. Here we prove a weaker bound on f(n), namely f(n) ≥ cn. Instead of recoloring a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 323  شماره 

صفحات  -

تاریخ انتشار 2014